Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.324
Filtrar
1.
Nat Commun ; 15(1): 3784, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710716

RESUMEN

Probiotic and engineered microbe-based therapeutics are an emerging class of pharmaceutical agents. They represent a promising strategy for treating various chronic and inflammatory conditions by interacting with the host immune system and/or delivering therapeutic molecules. Here, we engineered a targeted probiotic yeast platform wherein Saccharomyces boulardii is designed to bind to abundant extracellular matrix proteins found within inflammatory lesions of the gastrointestinal tract through tunable antibody surface display. This approach enabled an additional 24-48 h of probiotic gut residence time compared to controls and 100-fold increased probiotic concentrations within the colon in preclinical models of ulcerative colitis in female mice. As a result, pharmacodynamic parameters including colon length, colonic cytokine expression profiles, and histological inflammation scores were robustly improved and restored back to healthy levels. Overall, these studies highlight the potential for targeted microbial therapeutics as a potential oral dosage form for the treatment of inflammatory bowel diseases.


Asunto(s)
Colitis Ulcerosa , Colon , Modelos Animales de Enfermedad , Matriz Extracelular , Probióticos , Saccharomyces boulardii , Animales , Probióticos/administración & dosificación , Femenino , Ratones , Matriz Extracelular/metabolismo , Colitis Ulcerosa/terapia , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Colon/microbiología , Colon/metabolismo , Colon/patología , Ratones Endogámicos C57BL , Colitis/terapia , Colitis/microbiología , Colitis/patología , Citocinas/metabolismo , Humanos
2.
BMC Immunol ; 25(1): 21, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637733

RESUMEN

Helminth-derived proteins have immunomodulatory properties, influencing the host's immune response as an adaptive strategy for helminth survival. Helminth-derived proteins modulate the immune response by inducing anti-inflammatory cytokines, promoting regulatory T-cell development, and ultimately favouring a Th2-biased immune response. This systematic review focused on helminth-derived proteins and explored their impact on reducing inflammatory responses in mouse models of colitis. A systematic search across Medline, EMBASE, Web of Science, and Cochrane Library identified fourteen relevant studies. These studies reported immunomodulatory changes, including increased production of anti-inflammatory cells and cytokines. In mouse models of colitis treated with on helminth-derived proteins, significant improvements in pathological parameters such as body weight, colon length, and microscopic inflammatory scores were observed compared to control groups. Moreover, helminth-derived proteins can enhance the function of Tregs and alleviate the severity of inflammatory conditions. The findings underscore the pivotal role of helminth-derived proteins in immunomodulation, specifically in the axis of cytokine secretion and immune cell polarization. The findings offer new opportunities for treating chronic inflammatory conditions such Crohn's disease.


Asunto(s)
Colitis , Proteínas del Helminto , Animales , Ratones , Colitis/terapia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Proteínas del Helminto/uso terapéutico , Helmintos , Sistema Inmunológico/metabolismo , Factores Inmunológicos
5.
Front Immunol ; 15: 1366489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660314

RESUMEN

Cancer ranks among the foremost causes of mortality worldwide, posing a significant threat to human lives. The advent of tumor immunotherapy has substantially transformed the therapeutic landscape for numerous advanced malignancies, notably non-small cell lung cancer and melanoma. However, as immune checkpoint inhibitors (ICIs) are increasingly applied in clinical settings, a spectrum of undesired reactions, termed immune-related adverse events (irAEs), has emerged. These adverse reactions are associated with immunotherapy and can result in varying degrees of harm to the human body. Among these reactions, Immune checkpoint inhibitor-induced colitis (ICIIC) stands out as one of the most prevalent clinical adverse events. In contemporary times, traditional Chinese medicine (TCM) has demonstrated remarkable efficacy in addressing various maladies. Consequently, investigating the potential application and mechanisms of Chinese medicine in countering immune checkpoint inhibitor-induced colitis assumes significant importance in the treatment of this condition.


Asunto(s)
Colitis , Inhibidores de Puntos de Control Inmunológico , Medicina Tradicional China , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Colitis/inducido químicamente , Colitis/inmunología , Colitis/terapia , Animales , Medicamentos Herbarios Chinos/efectos adversos , Medicamentos Herbarios Chinos/uso terapéutico , Inmunoterapia/efectos adversos , Inmunoterapia/métodos
6.
Surg Clin North Am ; 104(3): 545-556, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677819

RESUMEN

Clostridioides difficile colitis is an important source of hospital-acquired diarrhea associated with antibiotic use. Symptoms are profuse watery diarrhea, typically following a course of antibiotics; however, some cases of fulminant disease may manifest with shock, ileus, or megacolon. Nonfulminant colitis is treated with oral fidaxomicin. C difficile colitis has a high potential for recurrence, and recurrent episodes are also treated with fidaxomicin. Bezlotoxumab is another medication that may be used in populations at high risk for further recurrence. Fulminant disease is treated with maximal medical therapy and early surgical consultation. Antibiotic stewardship is critical to preventing C difficile colitis.


Asunto(s)
Antibacterianos , Clostridioides difficile , Infecciones por Clostridium , Colitis , Humanos , Infecciones por Clostridium/diagnóstico , Infecciones por Clostridium/terapia , Antibacterianos/uso terapéutico , Colitis/microbiología , Colitis/diagnóstico , Colitis/terapia , Fidaxomicina/uso terapéutico
7.
J Agric Food Chem ; 72(18): 10355-10365, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38620073

RESUMEN

The genus Bifidobacterium has been widely used in functional foods for health promotion due to its beneficial effects on human health, especially in the gastrointestinal tract (GIT). In this study, we characterize the anti-inflammatory potential of the probiotic strain Bifidobacterium pseudocatenulatum G7, isolated from a healthy male adult. G7 secretion inhibited inflammatory response in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Moreover, oral administration of bacteria G7 alleviated the severity of colonic inflammation in dextran sulfate sodium (DSS)-treated colitis mice, which was evidenced by a decreased disease activity index (DAI) and enhanced structural integrity of the colon. The 16S rRNA gene sequencing result illustrated that the G7 alleviated DSS-induced gut microbiota dysbiosis, accompanied by the modulated bile acids and short-chain fatty acid (SCFA) levels. Overall, our results demonstrated the potential anti-inflammatory effects of Bifidobacterium pseudocatenulatum G7 on both in vitro and in vivo models, which provided a solid foundation for further development of a novel anti-inflammatory probiotic.


Asunto(s)
Antiinflamatorios , Bifidobacterium pseudocatenulatum , Colitis , Microbioma Gastrointestinal , Probióticos , Probióticos/administración & dosificación , Probióticos/farmacología , Ratones , Animales , Células RAW 264.7 , Masculino , Antiinflamatorios/administración & dosificación , Humanos , Colitis/microbiología , Colitis/terapia , Colitis/inducido químicamente , Bifidobacterium pseudocatenulatum/genética , Bifidobacterium pseudocatenulatum/química , Ratones Endogámicos C57BL , Macrófagos/inmunología , Ácidos Grasos Volátiles/metabolismo , Colon/microbiología , Colon/inmunología
8.
Biomaterials ; 308: 122564, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38581763

RESUMEN

Probiotic-based therapies have shown great potential in the prevention and treatment of many diseases by positively regulating intestinal flora homeostasis. However, the efficacy of oral probiotics is severely limited due to the loss of bioactivity, short intestinal retention time, and insufficient therapeutic effect. Here, based on droplet microfluidics, we developed a hydrogel microsphere with colonic targeting and mucoadhesive capabilities as a multifunctional delivery platform, which can be used for co-delivery of probiotics (Escherichia coli Nissle 1917, EcN) and auxiliary molecules (indole-3-propionic acid, IPA), achieving synergistic therapeutic effects. In vivo studies shown that the integrated multifunctional microspheres can significantly reduce intestinal inflammation, repair intestinal barrier function, enhance probiotic colonization in the intestine, and modulate disordered intestinal flora, demonstrating enhanced therapeutic effects in a mouse model of colitis. This work reveals that microfluidic-based smart droplet microspheres can provide a versatile platform for advanced microbial therapies.


Asunto(s)
Microesferas , Probióticos , Probióticos/administración & dosificación , Animales , Administración Oral , Ratones , Escherichia coli , Colitis/terapia , Microfluídica/métodos , Ratones Endogámicos C57BL , Sistemas de Liberación de Medicamentos/métodos , Hidrogeles/química , Indoles/química , Microbioma Gastrointestinal/efectos de los fármacos , Humanos
9.
Stem Cell Res Ther ; 15(1): 69, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454492

RESUMEN

BACKGROUND: A significant unmet need in inflammatory bowel disease is the lack of anti-fibrotic agents targeting intestinal fibrosis. This study aimed to investigate the anti-fibrogenic properties and mechanisms of the conditioned medium (CM) from human umbilical cord/placenta-derived mesenchymal stem cells (UC/PL-MSC-CM) in a murine intestinal fibrosis model and human primary intestinal myofibroblasts (HIMFs). METHODS: UC/PL-MSC-CM was concentrated 15-fold using a 3 kDa cut-off filter. C57BL/6 mice aged 7 weeks old were randomly assigned to one of four groups: (1) control, (2) dextran sulfate sodium (DSS), (3) DSS + CM (late-phase treatment), and (4) DSS + CM (early-phase treatment). Chronic DSS colitis and intestinal fibrosis was induced by three cycles of DSS administration. One DSS cycle consisted of 7 days of oral DSS administration (1.75%, 2%, and 2.5% DSS), followed by 14 days of drinking water. UC/PL-MSC-CM was intraperitoneally administered in the late phase (from day 50, 10 times) or early phase (from day 29, 10 times) of DSS cycles. HIMFs were treated with TGF-ß1 and co-treated with UC/PL-MSC-CM (10% of culture media) in the cellular model. RESULTS: In the animal study, UC/PL-MSC-CM reduced submucosa/muscularis propria thickness and collagen deposition, which improved intestinal fibrosis in chronic DSS colitis. The UC/PL-MSC-CM significantly reduced the expressions of procollagen1A1 and α-smooth muscle actin, which DSS significantly elevated. The anti-fibrogenic effect was more apparent in the UC-MSC-CM or early-phase treatment model. The UC/PL-MSC-CM reduced procollagen1A1, fibronectin, and α-smooth muscle actin expression in HIMFs in the cellular model. The UC/PL-MSC-CM downregulated fibrogenesis by suppressing RhoA, MRTF-A, and SRF expression. CONCLUSIONS: Human UC/PL-MSC-CM inhibits TGF-ß1-induced fibrogenic activation in HIMFs by blocking the Rho/MRTF/SRF pathway and chronic DSS colitis-induced intestinal fibrosis. Thus, it may be regarded as a novel candidate for stem cell-based therapy of intestinal fibrosis.


Asunto(s)
Colitis , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Medios de Cultivo Condicionados/farmacología , Medios de Cultivo Condicionados/metabolismo , Actinas/metabolismo , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/terapia , Colitis/metabolismo , Factores Inmunológicos , Fibrosis , Células Madre Mesenquimatosas/metabolismo , Cordón Umbilical , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad
10.
Front Immunol ; 15: 1365457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529272

RESUMEN

Background: Inflammatory bowel disease (IBD) greatly affects human quality of life. Mannose has been reported to be used to treat IBD, but the mechanism is currently unknown. Methods: C57/BL mice were used as research subjects, and the mouse acute colitis model was induced using dextran sulfate sodium salt (DSS). After oral administration of mannose, the body weights and disease activity index (DAI) scores of the mice were observed. The colon lengths, histopathological sections, fecal content microbial sequencing, colon epithelial inflammatory genes, and tight junction protein Occludin-1 expression levels were measured. We further used the feces of mice that had been orally administered mannose to perform fecal bacterial transplantation on the mice with DSS-induced colitis and detected the colitis-related indicators. Results: Oral administration of mannose increased body weights and colon lengths and reduced DAI scores in mice with DSS-induced colitis. In addition, it reduced the expression of colon inflammatory genes and the levels of serum inflammatory factors (TNF-α, IL-6, and IL-1ß), further enhancing the expression level of the colonic Occludin-1 protein and alleviating the toxic response of DSS to the intestinal epithelium of the mice. In addition, gut microbial sequencing revealed that mannose increased the abundance and diversity of intestinal flora. Additionally, after using the feces of the mannose-treated mice to perform fecal bacterial transplantation on the mice with DSS-induced colitis, they showed the same phenotype as the mannose-treated mice, and both of them alleviated the intestinal toxic reaction induced by the DSS. It also reduced the expression of intestinal inflammatory genes (TNF-α, IL-6, and IL-1ß) and enhanced the expression level of the colonic Occludin-1 protein. Conclusion: Mannose can treat DSS-induced colitis in mice, possibly by regulating intestinal microorganisms to enhance the intestinal immune barrier function and reduce the intestinal inflammatory response.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Ratones , Humanos , Animales , Manosa , Sulfato de Dextran/toxicidad , Interleucina-6 , Factor de Necrosis Tumoral alfa , Ocludina/genética , Calidad de Vida , Colitis/inducido químicamente , Colitis/terapia , Colitis/metabolismo , Cloruro de Sodio , Cloruro de Sodio Dietético , Peso Corporal
11.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G607-G621, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38502145

RESUMEN

Fecal microbiota transplantation (FMT) is a promising therapy for inflammatory bowel disease (IBD) via rectifying gut microbiota. The aim of this study was to identify a mechanism of how specific bacteria-associated immune response contributes to alleviated colitis. Forty donors were divided into high (donor H) and low (donor L) groups according to the diversity and the abundance of Bacteroides and Faecalibacterium by 16S rRNA sequencing. FMT was performed on dextran sulfate sodium (DSS)-induced colitis in mice. Mice with colitis showed significant improvement in intestinal injury and immune imbalance after FMT with group donor H (P < 0.05). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii were identified as targeted strains in donor feces by real-time PCR and droplet digital PCR. Mice with colitis were treated with mono- or dual-bacterial gavage therapy. Dual-bacterial therapy significantly ameliorated intestinal injury compared with mono-bacterial therapy (P < 0.05). Dual-bacterial therapy increased the M2/M1 macrophage polarization and improved the Th17/Treg imbalance and elevated IL-10 production by Tregs compared with the DSS group (P < 0.05). Metabolomics showed increased abundance of lecithin in the glycerophospholipid metabolism pathway. In conclusion, B. thetaiotaomicron and F. prausnitzii, as the key bacteria in donor feces, alleviate colitis in mice. The mechanism may involve increasing lecithin and regulating IL-10 production of intestinal Tregs.NEW & NOTEWORTHY We demonstrate that donors with high abundance of Bacteroides and Faecalibacterium ameliorate dextran sulfate sodium (DSS)-induced colitis in mice by fecal microbiota transplantation (FMT). The combination therapy of Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii is superior to mono-bacterial therapy in ameliorating colitis in mice, of which mechanism may involve promoting lecithin and inducing IL-10 production of intestinal Tregs.


Asunto(s)
Bacteroides thetaiotaomicron , Colitis , Faecalibacterium prausnitzii , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Animales , Colitis/terapia , Colitis/microbiología , Colitis/inducido químicamente , Colitis/inmunología , Ratones , Masculino , Humanos , Sulfato de Dextran , Ratones Endogámicos C57BL , Interleucina-10/metabolismo , Adulto , Femenino , Heces/microbiología , Modelos Animales de Enfermedad , Persona de Mediana Edad
12.
Nat Commun ; 15(1): 2769, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553486

RESUMEN

Multiple neurological disorders are associated with gastrointestinal (GI) symptoms, including autism spectrum disorder (ASD). However, it is unclear whether GI distress itself can modify aspects of behavior. Here, we show that mice that experience repeated colitis have impaired active social engagement, as measured by interactions with a foreign mouse, even though signs of colitis were no longer present. We then tested the hypothesis that individuals with ASD harbor a microbiota that might differentially influence GI health by performing microbiota transplantation studies into male germfree animals, followed by induction of colitis. Animals that harbor a microbiota from ASD individuals have worsened gut phenotypes when compared to animals colonized with microbiotas from familial neurotypical (NT) controls. We identify the enrichment of Blautia species in all familial NT controls and observe an association between elevated abundance of Bacteroides uniformis and reductions in intestinal injury. Oral treatment with either of these microbes reduces colon injury in mice. Finally, provision of a Blautia isolate from a NT control ameliorates gut injury-associated active social engagement in mice. Collectively, our data demonstrate that past intestinal distress is associated with changes in active social behavior in mice that can be ameliorated by supplementation of members of the human microbiota.


Asunto(s)
Trastorno del Espectro Autista , Colitis , Enfermedades Gastrointestinales , Microbiota , Humanos , Masculino , Ratones , Animales , Trastorno del Espectro Autista/terapia , Participación Social , Colitis/terapia , Suplementos Dietéticos
13.
Gut Microbes ; 16(1): 2310894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38312103

RESUMEN

Gut microbiota and related metabolites are both crucial factors that significantly influence how individuals with Crohn's disease respond to immunotherapy. However, little is known about the interplay among gut microbiota, metabolites, Crohn's disease, and the response to anti-α4ß7-integrin in current studies. Our research utilized 2,4,6-trinitrobenzene sulfonic acid to induce colitis based on the humanized immune system mouse model and employed a combination of whole-genome shotgun metagenomics and non-targeted metabolomics to investigate immunotherapy responses. Additionally, clinical cases with Crohn's disease initiating anti-α4ß7-integrin therapy were evaluated comprehensively. Particularly, 16S-rDNA gene high-throughput sequencing and targeted bile acid metabolomics were conducted at weeks 0, 14, and 54. We found that anti-α4ß7-integrin therapy has shown significant potential for mitigating disease phenotypes in remission-achieving colitis mice. Microbial profiles demonstrated that not only microbial composition but also microbially encoded metabolic pathways could predict immunotherapy responses. Metabonomic signatures revealed that bile acid metabolism alteration, especially elevated secondary bile acids, was a determinant of immunotherapy responses. Especially, the remission mice significantly enriched the proportion of the beneficial Lactobacillus and Clostridium genera, which were correlated with increased gastrointestinal levels of BAs involving lithocholic acid and deoxycholic acid. Moreover, most of the omics features observed in colitis mice were replicated in clinical cases. Notably, anti-α4ß7 integrin provided sustained therapeutic benefits in clinical remitters during follow-up, and long-lasting remission was linked to persistent changes in the microbial-related bile acids. In conclusion, gut microbiota-mediated bile acid metabolism alteration could play a crucial role in regulating immunotherapy responses to anti-α4ß7-integrin in Crohn's disease. Therefore, the identification of prognostic microbial signals facilitates the advancement of targeted probiotics that activate anti-inflammatory bile acid metabolic pathways, thereby improving immunotherapy responses. The integrated multi-omics established in our research provide valuable insights into potential mechanisms that impact treatment responses in complex diseases.


Asunto(s)
Colitis , Enfermedad de Crohn , Microbioma Gastrointestinal , Animales , Ratones , Enfermedad de Crohn/tratamiento farmacológico , Multiómica , Integrinas/genética , Integrinas/uso terapéutico , Colitis/inducido químicamente , Colitis/terapia , Ácidos y Sales Biliares/uso terapéutico , Inmunoterapia
14.
Nutrients ; 16(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38337648

RESUMEN

Exclusive enteral nutrition (EEN) is an established dietary treatment for Crohn's disease (CD) by alleviating inflammation and inducing remission. However, the mechanisms of action of EEN are incompletely understood. As CD is associated with gut microbiome dysbiosis, we investigated the effect of EEN on the microbiome in a rat model of CD-like colitis. The rat model of CD-like colitis was established by an intracolonic instillation of TNBS at 65 mg/kg in 250 µL of 40% ethanol. Sham control rats were instilled with saline. Rats were fed ad libitum with either regular pellet food or EEN treatment with a clear liquid diet (Ensure). Rats were euthanized at 7 days. Fecal pellets were collected from the distal colon for 16S rRNA sequencing analysis of gut microbiota. In addition, colon tissues were taken for histological and molecular analyses in all the groups of rats. EEN administration to TNBS-induced CD rats significantly improved the body weight change, inflammation scores, and disease activity index. The mRNA expression of IL-17A and interferon-γ was significantly increased in the colonic tissue in TNBS rats when fed with regular food. However, EEN treatment significantly attenuated the increase in IL-17A and interferon-γ in TNBS rats. Our 16S rRNA sequencing analysis found that gut microbiota diversity and compositions were significantly altered in TNBS rats, compared to controls. However, EEN treatment improved alpha diversity and increased certain beneficial bacteria such as Lactobacillus and Dubosiella and decreased bacteria such as Bacteroides and Enterorhabdus in CD-like rats, compared to CD-like rats with the regular pellet diet. In conclusion, EEN treatment increases the diversity of gut microbiota and the composition of certain beneficial bacteria. These effects may contribute to the reduced inflammation by EEN in the rat model of CD-like colitis.


Asunto(s)
Colitis , Enfermedad de Crohn , Microbioma Gastrointestinal , Ratas , Animales , Enfermedad de Crohn/microbiología , Nutrición Enteral , ARN Ribosómico 16S/genética , Interleucina-17 , Interferón gamma , Colitis/inducido químicamente , Colitis/terapia , Bacterias , Inflamación/terapia , Inducción de Remisión
15.
Nutrients ; 16(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38398793

RESUMEN

Lactobacillus species have been shown to alleviate gut inflammation and oxidative stress. However, the effect of different lactobacilli components on gut inflammation has not been well studied. This study aims to identify the differences in the effect and mechanisms of different forms and components of Limosilactobacillus mucosae (LM) treatment in the alleviation of gut inflammation using a colitis mouse model that is induced by dextran sodium sulfate (DSS). Seventy-two C57BL/6 mice were divided into six groups: control, DSS, live LM+DSS (LM+DSS), heat-killed LM+DSS (HKLM+DSS), LM cell-free supernatant + DSS (LMCS+DSS), and MRS medium + DSS (MRS+DSS). The mice were treated with different forms and components of LM for two weeks before DSS treatment. After that, the mice were sacrificed for an assessment of their levels of inflammatory cytokines, serotonin (5-HT) receptors (HTRs), and tryptophan metabolites. The results showed that, compared to other treatments, LMCS was more effective (p < 0.05) in the alleviation of DSS-induced body weight loss and led to an increase in the disease activity index score. All three forms and components of LM increased (p < 0.05) the levels of indole-3-acetic acid but reduced (p < 0.05) the levels of 5-HT in the colon. HKLM or LMCS reduced (p < 0.05) the percentages of CD3+CD8+ cytotoxic T cells but increased (p < 0.05) the percentages of CD3+CD4+ T helper cells in the spleen. LM or HKLM increased (p < 0.05) abundances of CD4+Foxp3+ regulatory T cells in the spleen. The LM and LMCS treatments reduced (p < 0.05) the expression of the pro-inflammatory cytokines Il6 and Il17a. The mice in the HKLM+DSS group had higher (p < 0.05) mRNA levels of the anti-inflammatory cytokine Il10, the cell differentiation and proliferation markers Lgr5 and Ki67, the 5-HT degradation enzyme Maoa, and HTRs (Htr1a, Htr2a, and Htr2b) in the colon. All three forms and components of LM reduced the phosphorylation of STAT3. The above findings can help to optimize the functionality of probiotics and develop new dietary strategies that aid in the maintenance of a healthy gut.


Asunto(s)
Colitis , Serotonina , Animales , Ratones , Serotonina/metabolismo , Calor , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/terapia , Lactobacillus/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Receptores de Serotonina/metabolismo , Inmunidad , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Colon/metabolismo
16.
Int J Mol Sci ; 25(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38203732

RESUMEN

Despite Bacillus species having been extensively utilized in the food industry and biocontrol as part of probiotic preparations, limited knowledge exists regarding their impact on intestinal disorders. In this study, we investigated the effect of Bacillus licheniformis ZW3 (ZW3), a potential probiotic isolated from camel feces, on dextran sulfate sodium (DSS)-induced colitis. The results showed ZW3 partially mitigated body weight loss, disease activity index (DAI), colon shortening, and suppressed immune response in colitis mice, as evidenced by the reduction in the levels of the inflammatory markers IL-1ß, TNF-α, and IL-6 (p < 0.05). ZW3 was found to ameliorate DSS-induced dysfunction of the colonic barrier by enhancing mucin 2 (MUC2), zonula occluden-1 (ZO-1), and occludin. Furthermore, enriched beneficial bacteria Lachnospiraceae_NK4A136_group and decreased harmful bacteria Escherichia-Shigella revealed that ZW3 improved the imbalanced gut microbiota. Abnormally elevated uric acid levels in colitis were further normalized upon ZW3 supplementation. Overall, this study emphasized the protective effects of ZW3 in colitis mice as well as some potential applications in the management of inflammation-related diseases.


Asunto(s)
Bacillus licheniformis , Bacillus , Colitis , Probióticos , Animales , Ratones , Colitis/inducido químicamente , Colitis/terapia , Camelus , Homeostasis , Probióticos/farmacología , Probióticos/uso terapéutico
17.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38255781

RESUMEN

Intestinal alkaline phosphatase (IAP) is an enzyme that plays a protective role in the gut. This study investigated the effect of IAP treatment on experimental colitis in mice subjected to forced exercise on a high-fat diet. C57BL/6 mice with TNBS colitis were fed a high-fat diet and subjected to forced treadmill exercise with or without IAP treatment. Disease activity, oxidative stress, inflammatory cytokines, and gut microbiota were assessed. Forced exercise exacerbated colitis in obese mice, as evidenced by increased disease activity index (DAI), oxidative stress markers, and proinflammatory adipokines and cytokines. IAP treatment significantly reduced these effects and promoted the expression of barrier proteins in the colonic mucosa. Additionally, IAP treatment altered the gut microbiota composition, favoring beneficial Verrucomicrobiota and reducing pathogenic Clostridia and Odoribacter. IAP treatment ameliorates the worsening effect of forced exercise on murine colitis by attenuating oxidative stress, downregulating proinflammatory biomarkers, and modulating the gut microbiota. IAP warrants further investigation as a potential therapeutic strategy for ulcerative colitis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Animales , Ratones , Ratones Endogámicos C57BL , Fosfatasa Alcalina , Ratones Obesos , Colitis/inducido químicamente , Colitis/terapia , Antiinflamatorios , Colorantes , Citocinas
18.
Nano Lett ; 24(4): 1081-1089, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38227962

RESUMEN

Oral administration of probiotics orchestrates the balance between intestinal microbes and the immune response. However, effective delivery and in situ colonization are limited by the harsh environment of the gastrointestinal tract. Herein, we provide a microfluidics-derived encapsulation strategy to address this problem. A novel synergistic delivery system composed of EcN Nissle 1917 and prebiotics, including alginate sodium and inulin gel, for treating inflammatory bowel disease and colitis-associated colorectal cancer is proposed. We demonstrated that EcN@AN microparticles yielded promising gastrointestinal resistance for on-demand probiotic delivery and colon-retentive capability. EcN@AN microparticles efficiently ameliorated intestinal inflammation and modulated the gut microbiome in experimental colitis. Moreover, the prebiotic composition of EcN@AN enhanced the fermentation of relative short-chain fatty acid metabolites, a kind of postbiotics, to exert anti-inflammatory and tumor-suppressive effects in murine models. This microfluidcis-based approach for the coordinated delivery of probiotics and prebiotics may have broad implications for gastrointestinal bacteriotherapy applications.


Asunto(s)
Colitis , Probióticos , Animales , Ratones , Prebióticos , Microfluídica , Colitis/terapia , Probióticos/uso terapéutico , Inmunidad
19.
J Agric Food Chem ; 72(4): 2214-2228, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38237048

RESUMEN

Previously, Lactobacillus paracasei VL8, a lactobacillus strain isolated from the traditional Finnish fermented dairy product Viili, demonstrated immunomodulatory and antibacterial effects. The prebiotic mannan-oligosaccharide (MOS) further promoted its antibacterial activity and growth performance, holding promise for maintaining intestinal health. However, this has not been verified in vivo. In this study, we elucidated the process by which L. paracasei VL8 and its synbiotc combination (SYN) with MOS repair the intestinal barrier function in dextran sodium sulfate (DSS)-induced colitis mice. SYN surpasses VL8 or MOS alone in restoring goblet cells and improving the tight junction structure. Omics analysis on gut microbiota reveals SYN's ability to restore Lactobacillus spp. abundance and promote tryptophan metabolism. SYN intervention also inhibits the DSS-induced hyperactivation of the Wnt/ß-catenin pathway. Tryptophan metabolites from Lactobacillus induce intestinal organoid differentiation. Co-housing experiments confirm microbiota transferability, replicating intestinal barrier repair. In conclusion, our study highlights the potential therapeutic efficacy of the synbiotic combination of Lactobacillus paracasei VL8 and MOS in restoring the damaged intestinal barrier and offers new insights into the complex crosstalk between the gut microbiota and intestinal stem cells.


Asunto(s)
Colitis , Lacticaseibacillus paracasei , Probióticos , Simbióticos , Animales , Ratones , Sulfato de Dextran/efectos adversos , Mananos , Probióticos/farmacología , Nicho de Células Madre , Triptófano , Colitis/inducido químicamente , Colitis/genética , Colitis/terapia , Lactobacillus , Oligosacáridos , Antibacterianos/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon
20.
Food Funct ; 15(4): 2022-2037, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38289370

RESUMEN

Probiotics are known for their beneficial effects on improving intestinal function by alleviating the gut microbial diversity. However, the influences of antioxidant lactic acid bacteria (LAB) and anti-inflammatory Clostridium butyricum (CB) on ameliorating enteritis remain unclear. In this study, we investigated the effects of the antioxidant strain Lactiplantibacillus plantarum AS21 and CB alone, or in combination on intestinal microbiota, barrier function, oxidative stress and inflammation in mice with DSS-induced colitis. All probiotic treatments relieved the pathological development of colitis by improving the integrity of the intestinal mucosal barrier and the length of the colon. The probiotics also suppressed inflammation and oxidative stress by improving gut short-chain fatty acids and inhibiting the p38-MAPK/NF-κB pathway in colon tissues. According to the meta-network analysis, three distinct modules containing sensitive OTUs of the gut bacterial community specific to the control, DSS and DSS + probiotics groups were observed, and unlike the other two modules, Lachnospiraceae and Clostridia dominated the sensitive OTUs in the DSS + probiotics group. In addition, administration of the present probiotics particularly increased antioxidant and anti-inflammatory microbes Muribaculaceae, Bifidobacterium, Prevotellaceae and Alloprevotella. Furthermore, combined probiotic strain treatment showed a more stable anti-colitis effect than a single probiotic strain. Collectively, the present probiotics exhibited protective effects against colitis by suppressing the inflammation and oxidative damage in the colon, improving the gut microbiota and their functions, and consequently preventing the gut leak. The results indicate that the combination of the antioxidant properties of LAB and the anti-inflammatory properties of CB as nutritional intervention and adjuvant therapy could be an effective strategy to prevent and alleviate colitis.


Asunto(s)
Clostridium butyricum , Colitis , Microbioma Gastrointestinal , Lactobacillales , Lactobacillus plantarum , Probióticos , Ratones , Animales , Antioxidantes/farmacología , Colitis/terapia , Colitis/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/uso terapéutico , Bacteroidetes , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Colon/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA